An individually addressable suspended-drop electroporation system for high-throughput cell transfection.
نویسندگان
چکیده
High-efficiency transfection of genes, proteins, or drug compounds into cells without causing permanent damage is a prerequisite for many cell biology experiments. Here, we report a printed circuit board (PCB)-based electroporation device for high-throughput delivery of exogenous molecules into cells in an individually addressable manner. This device incorporates an array of 96 through-holes on the PCB with a pair of gold coated symmetric electrodes plated on the wall of each through-hole. A mixture of cell suspension and exogenous molecules is top-loaded, electroporated, and bottom-ejected with cell culture medium into the corresponding well of a 96-well plate placed under the PCB. One group of electrodes on the same side of the 96 through-holes were connected to eight top pads via connecting row wires plated on the top surface of the PCB and the other group of electrodes were connected in a column format to twelve bottom pads. Therefore, each pair of electrodes can be selectively energized, guaranteeing that appropriate electroporation parameters can be applied to different holes. We demonstrate the use of the present device to effectively introduce plasmid DNA and synthetic interfering RNA into cultured and primary cells with high cell viability and transfection efficiency. The high performance and low cost features make our device an ideal platform for cellular and molecular research and high-throughput screening.
منابع مشابه
Optimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line
Background: Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. ...
متن کاملHigh-throughput in situ cell electroporation microsystem for parallel delivery of single guide RNAs into mammalian cells
Arrayed genetic screens mediated by the CRISPR/Cas9 technology with single guide RNA (sgRNA) libraries demand a high-throughput platform capable of transfecting diverse cell types at a high efficiency in a genome-wide scale for detection and analysis of sophisticated cellular phenotypes. Here we developed a high-throughput in situ cell electroporation (HiCEP) microsystem which leveraged the sup...
متن کاملA High Performance Continuous Electroporation Chip
Electroporation is an effective method for delivery of biological components into mammalian cells and is of great importance for modern life science. Here we report a novel continuous electroporation chip with great performance. Integration of the microfluid channel, micromachined Au electrodes and hydrodynamic focusing enables high-throughput and high-efficiency electroporation. Using the stan...
متن کامل3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control.
Of great interest to modern medicine and biomedical research is the ability to inject individual target cells with the desired genes or drug molecules. Some advances in cell electroporation allow for high throughput, high cell viability, or excellent dosage control, yet no platform is available for the combination of all three. In an effort to solve this problem, here we show a "3D nano-channel...
متن کاملFlow-through Electroporation for Transfection Based on Low-frequency Ac Voltage
Department of Chemical Engineering, Virginia Tech, USA Electroporation has been demonstrated to be an efficient technique for gene transfection on mammalian cells. However, traditional technique employing direct current (DC) electrical pulses has the problem of too much electrolysis and low cell viability, which limits the application in gene delivery study. We demonstrate here flow-through ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2014